سی پی یو

سی پی یو یا به عبارتی واحد پردازشگر مرکزی در حکم مغز و اداره کننده ی کامپیوتر است و مسئولیت انجام محاسبات ریاضی داخلی کامپیوتر و فرمان دادن به دیگر اجزا را به عهده دارد. تمام کامپیوترها اعم از کامپیوترهای شخصی ، کامپیوترهای دستی و ... دارای ریزپردازنده می باشند. نوع  ریزپردازنده استفاده شده در یک کامپیوتر می تواند متفاوت باشد ولی تمام آنها عملیات یکسانی را انجام خواهند داد.

سی پی یو محاسبات داخلی کامپیوتر را به وسیله ی دو عدد 0 و 1 ( صفر و یک ) انجام میدهد. کلیه ی قطعات داخل کامپیوتر برای انجام کارها و محاسبات خود نیازمند این قطعه ی کوچک هستند که این ارتباط را از طریق خطوطی با نامIRQ  ( در خواست وقفه ) برقرار میکنند. ساختمان داخلی سی پی یوها نیز متشکل از ترانزیستور های بسیار ریز است که به تعداد بسیار زیاد و دقت بسیار بیشتر در کنار هم قرار داده شده اند. برای مثال یک سی پی یو متعلق به کمپانی اینتل با سرعت 3.4 گیگا هرتز متشکل از 125 میلیون ترانزیستور کنار هم قرار داده شده است که سایز هر کدام از انها 90 نانو متر معادل 0.09 میکرون است! رقمهایی اعجاب انگیر که حاکی از پیچیده و اسیب پذیر بودن ساختار این قطعه دارند.

مراحل ساخت پردازنده

1: ماده اولیه

امروزه همه می دانند که ماده اولیه پردازنده ها همچون دیگر مدارات مجتمع الکترونیکی، سیلیکون است.در واقع سیلیکون همان ماده سازنده شیشه است که از شن استخراج می شود. البته عناصر بسیار دیگری هد در این فرایند به کار برده می شوند و لیکن از نظر درصد وزنی، سهم مجموع این عناصر نسبت به سیلیکون به کار رفته در محصول نهایی بسیار جزئی است.

آلمینیوم یکی از موارد دیگری است که در فرایند تولید پردازنده های مدرن، مس به تدریج جایگزین آلمینیوم می شود. علاوه بر آنکه فلز مس دارای ضریب هدایت الکتریکی بیشتری نسبت به آلمینیوم است،دلیل مهم تری هم برای استفاده از مس در طراحی پردازنده های مدرن امروزی وجود دارد. یکی از بزرگ ترین مسائلی که در طراحی پردازنده ها ی امروزی مطرح است، موضوع نیاز به ساختارهای فیزیکی ظریف تر است. به یاد دارید که اندازه ها در پردازنده های امروزی در حد چند ده نانو متر هستند. پس از آنجایی که با استفاده از فلز مس، می توان اتصالات ظریف تری ایجاد کرد، این فلز جایگزین آلومینوم شده است.

2: آماده سازی

فرایندهای تولید قطعات الکترونیکی از یک جهت با بسیاری از فرایندهای تولید دیگر متفاوت است. در فرایندهای تولید قطعات الکترونیک، درجه خلوص مواد اولیه مورد نیاز در حد بسیار بالایی اهمیت بسیار زیادی دارند.

اهمیت این موضوع در حدی است که از اصطلاح electronic grade برای اشاره به درجه خلوص بسیار بالایی مواد استفاده می شود.

به همین دلیل مرحله مهمی به نام آماده سازی در تمامی فرایندهای تولید قطعات الکترونیک وجود دارد. در این مرحله درجه خلوص موارد اولیه به روش های گوناگون و در مراحل متعدد افزایش داده می شود تا در نهایت به مقدار خلوص مورد نظر برسد. درجه خلوص مواد اولیه مورد نیاز در این صنعت به اندازه ای بالاست که توسط واحدهایی مانند ppm به معنی چند اتم نا خالصی در یک میلیون اتم ماده اولیه،بیان می شوند.

آخرین مرحله خالص سازی ماده سیلیکون،به این صورت انجام می شود که یک بلور خالص سیلیکون درون ظرف سیلیکون مذاب خالص شده قرار داده می شود، تا بلور باز هم خالص تری در این ظرف رشد کند ( همان طور که بلورهای نبات در درون محلول اشباع شده به دور یک ریسمان نازک رشد می کنند ) . در واقع به این ترتیب، ماده سیلیکون مورد نیاز به صورت یک شمش تک کریستالی تهیه می شود ( یعنی تمام یک شمش بیست سانتی متری سیلیکون، یک بلور پیوسته و بدون نقض باید باشد!). این روش در صنعت تولید چیپ به روش cz معروف است. تهیه چنین شمش تک بلوری سیلیکون آن قدر اهمیت دارد که یکی از تحقیقات اخیر اینتل و دیگر شرکت های تولید کننده پردازنده، معطوف تولید شمش های سی سانتی متری سیلیکون تک بلوری بوده است. در حالی که خط تولید شمش های بیست سانتی متری سیلیکون هزینه ای معادل 5/1 میلیارد دلار در بر دارد، شرکت های تولید کننده پردازنده ، برای بدست آوردن خط تولید شمش های تک بلوری سیلیکون سی سانتی متری، 5/3 میلیارد دلار هزینه می کنند. موضوع جالب توجه در این مورد ان است که تغییر اندازه شمش های تک بلوری ، تاکنون سریع تر از یک بار در هر ده سال نبوده است. پس از آنکه یک بلور سیلیکونی غول آسا به شکل یک استوانه تهیه گشت، گام بعدی ورقه ورقه بریدن این بلور است. هر ورقه نازک از این سیلیکون، یک ویفر نامیده می شود که اساس ساختار پردازنده ها را تشکیل می دهد. در واقع تمام مدارات یا ترانزیستورهای لازم،بر روی این ویفر تولید می شوند. هر چه این ورقه ها نازک تر باشند،عمل برش بدون آسیب دیدن ویفر مشل تر خواهد شد. از طرف دیگر این موضوع به معنی افزایش تعداد چیپ هایی است که میتوان با یک شمش سیلیکونی تهیه کرد. در هر صورت پس از آنکه ویفرهای سیلیکونی بریده شدند.نوبت به صیقل کاری آنها می رسد. ویفرها آنقدر صیقل داده می شوند که سطوح آنها آیینه ای شود. کوچکترین نقص در این ویفرها موجب عدم کارکرد محصول نهایی خواهد بود. به همین دلیل،یکی دیگر از مراحل بسیار دقیق بازرسی محصول در این مرحله صورت می گیرد. در این گام،علاوه بر نقص های بلوری که ممکن است در فرایند تولید شمش سیلیکون ایجاد شده باشند، نقص های حاصل از فرایند برش کریستال نیز به دقت مورد کنکاش قرار می گیرند.

3: ساخت ترانزیستورها بر روی ویفر سیلیکونی

برای این کار لازم است که مقدار بسیار دقیق و مشخصی از ماده دیگری به درون بلور سیلیکون تزریق شود. بدین معنی که بین هر مجموعه اتم سیلیکون در ساختار بلوری دقیقا” یک اتم از ماده دیگر قرار گیرد. در واقع در این مرحله نخستین گام فرایند تولید ماده نیمه هادی محسوب می شود که اساس ساختمان قطعات الکترونیک مانند ترانزیستور را تشکیل می دهد. ترانزیستورهایی که در پردازنده های امروزی به کار گرفته می شوند،توسط تکنولوژی CMOS تولید می شوند.CMOS مخخف عبارتComplementary Metal Oxide Semiconductor است . در اینجا منظور از واژه Complementary آن است که در این تکنولوژی از تعامل نیمه هادی های نوع n و p استفاده می شود.

در این مرحله، بر اثر تزریق مواد گوناگون و همچنین ایجاد پوشش های فلزی فوق نازک ( در حد ضخامت چند اتم ) در مراحل متعدد، یک ساختار چند لایه ای و ساندویچی بر روی ویفر سیلیکونی اولیه شکل می گیرد. در طول این فرایند ، ویفر ساندویچی سیلیکونی در کوره ای قرار داده می شود تا تحت شرایط کنترل شده و بسیار دقیق ( حتی در اتمسفر مشخص) پخته می شود و لایه ای از sio2 بر روی ویفر ساندویچی تشکیل شود. در جدید ترین فناوری اینتل به تکنولوژی 90 نانو متری معروف است، ضخامت لایه sio2 فقط 5 اتم است! این لایه در مراحل بعدی دروازه یا Gate هر ترانزیستور واقع در چیپ پردازنده خواهد بود که جریان الکتریکی عبوری را در کنترل خود دارد ترانزیستورهای تشکیل دهنده تکنولوژی CMOS از نوع ترازیستورهای اثر میدانی field Efect Transistor:FET نامیده می شوند. جریان الکتریکی از اتصالی بنام Source به اتصال دیگری به نام Drain جریان می یابد. وظیفه اتصال سوم به نام Gate در این ترانزیستور، کنترل و مدیریت بر مقدار و چگونگی عبور جریان الکتریکی از یک اتصال به اتصال دیگر است.

آخرین مرحله آماده سازی ویفر، قرار دادن پوشش ظریف دیگری بر روی ساندویچ سیلیکونی است که photo-resist نام دارد. ویژگی این لایه آخر همان طور که از نام آن مشخص می شود، مقاومت در برابر نور است. در واقع این لایه از مواد شیمیایی ویژه ای ساخته شده است که اگر در معرض تابش نور قرار گرفته شود، می توان آن را در محلول ویژه ای حل کرده و شست و در غیر این صورت ( یعنی اگر نور به این پوشش تابانده نشده باشد)، این پوشش در حلال حل نخواهد شد. فلسفه استفاده از چنین ماده ای را در بخش بعدی مطالعه خواهید کرد.

4: ماسک کردن

این مرحله از تولید پردازنده ها، به نوعی از مراحل قبلی کار نیز مهم تر است. در این مرحله عمل فتولیتو گرافی ( photolithography ) بر وروی ویفر ساندویچی انجام می شود. در واقع آنچه در این مرحله انجام می شود آن است که بر روی ویفر سیلیکونی، نقشه و الگوی استنسل مشخصی با استفاده از فرایند فتو لیتو گرافی چاپ می شود، تا بتوان در مرحله بعدی با حل کردن و شستن ناحیه های نور دیده به ساختار مورد نظر رسید ( از آنجایی که قرار است نقشه پیچیده ای بر روی مساحت کوچکی چاپ شود، از روش فتو لیتو گرافی کمک گرفته می شود. در این روش نقشه مورد نظر در مقیاس های بزرگتر – یعنی در اندازه هایی که بتوان در عمل آنرا تولید کرد، مثلا” در مربعی به مساحت یک متر مربع – تهیه می شود.سپس با تاباندن نور به الگو و استفاده از روش های اپتیکی، تصویر الگو را بر روی ناحیه بسیار کوچک ویفر می تاباند. مثلا” الگویی که در مساحت یک متر مربع تهیه شده بود به تصویر کوچکی در اندازه های چند میلیمتر مربع تبدیل می شود!) در این موارد چند نکته جالب توجه وجود دارد. نخست آنکه الگوها و نقشه هایی که باید بر وری ویفر چاپ شوند. آنقدر پیچیده هستند که برای توصیف آنها به 10 گیگابایت داده نیاز است. در واقع می توان این موضوع را به حالتی تشبیه کرد که در آن قرار است نقشه ای مانند یک شهر بزرگ با تمام جزئیات شهری و ساختمانی آن بر روی ویفر سیلیکونی به مساحت چند میلی متر مربع چاپ شود. نکته دیگر آنکه در ساختمان چیپ های پردازنده بیش از بیست لایه مختلف وجود دارد که برای هر یک از آنها لازم است چنین نقشه هایی لیتو گرافی شود. موضوع دیگر آن است که همانطور که از دروس دبیرستانی ممکن است به یاد داشته باشید. نور در لبه های اجسام دچار انحراف از مسیر راست می شود.(پدیده ای که به پراش یا Diffraction معروف است). هر چه لبه های اجسامی که در مسیر تابش واقع شده اند،کوچکتر یا ظریف تر باشند،پدیده پراش شدیدتر خواهد بود . در واقع یکی از بزرگ ترین موانع تولید پردازنده هایی که در آنها از ساختارهای ظریف تری استفاده شده باشد، همین موضوع پراکندگی یا تفریق نور است که باعث مات شدن تصویری می شود که قرار است بر روی ویفر چاپ شود . برای مقابله با این مسئله، یکی از موثرترین روش ها، آن است که از نوری در عمل فتولیتو گرافی استفاده کنیم که دارا ی طول موج کوچکتری است( بر اساس اصول اپتیک،هر چه طول موج نور تابنده شده کوچک تر باشد، شدت پدیده پراکندگی نور در لبه های اجسام کمتر خواهد بود.) برای همین منظور در تولید پردازنده ها، از نور uv ( ماورای بنفش ) استفاده می شود. در واقع برای آنکه بتوان تصویر شفاف و ظریفی در اندازه ها و مقیاس آنچنانی بر روی ویفرها تولید کرد، تنها طول موج ماورای بنفش جوابگو خواهد بود. پس از آنکه نقشه مورد نظر بر روی ویفر چاپ شود،ویفر در درون محلول شیمیایی ویژه ای قرار داده می شود تا جاهایی که در معرض تابش واقع شده اند، در آن حل شوند. بدین ترتیب شهر مینیاتوری را بروی ویفر سیلیکونی تجسم کنید که در این شهر خانه ها دارای سقفی از جنس sio2 هستند ( مکان هایی که نور ندیده اند و در نتیجه لایه مقاوم در برابر حلال مانع از حل شدن (sio2 بوده است).خیابان های این شهر فرضی نواحی که مورد تابش نور واقع شده اند و لایه مقاوم آن و همچنین لایه sio2 در حلال حل شده اند ) از جنس سیلیکون هستند.

5: تکرار

پس از این مرحله، لایه photo-resist باقی مانده از روی ویفر بر داشته می شود. در این مرحله ویفری در اختیار خواهیم داشت که در آن دیواره ای از جنس sio2 در زمینی از جنس سیلیکون واقع شده اند. پس از این گام، یکبار دیگر یک لایه sio2 به همراه پلی سیلیکون (polysilicon ) بر روی ویفر ایجاد شده و بار دیگر لایه photo-resist جدیدی بر روی ویفر پوشانده می شود.

همانند مراحل قبلی، چندین بار دیگر مراحل تابش نور و در حلال قرار دادن ویفر انجام می شوند. بدین ترتیب پس از دست یافتن به ساختار مناسب،ویفر در معرض بمباران یونی مواد مختلف واقع می شود تا نیمه هادی نوع n و p بر روی نواحی سیلیکونی باقی مانده تشکیل شوند. به این وسیله،مواد مشخصی در مقادیر بسیار کم و دقیق به درون بلور سیلیکون نفوذ داده می شوند تا خواص نیمه هادی نوع n و p به دست آیند. تا اینجای کار، یک لایه کامل از نقشه الکترونیکی ترانزیستوری دو بعدی بر روی ویفر سیلیکونی تشکیل شده است. با تکرار مراحل فوق، عملا” ساختار لایه ای سه بعدی از مدارات الکترونیکی درون پردازنده تشکیل می شود. در بین هر چند لایه، از لایه ای فلزی استفاده می شود که با حک کردن الگوها ی مشخصی بر روی آنها به همان روش های قبلی، لایه های سیم بندی بین المان ها ساخته شوند. پردازنده های امروزی اینتل، مثلا” پردازنده پنتیوم چهار ، از هفت لایه فلزی در ساختار خود بهره می گیرد. پردازنده AMD Athlon 64 از 9 لایه فلزی استفاده می کند.

6: غربال کردن

تولید ساندویچ های پیچیده تشکیل شده از لایه های متعدد سیلیکون، فلز و مواد دیگر،فرایندی است که ممکن است روزها و حتی هفته ها به طول انجامد. در تمامی این مراحل ، آزمایش های بسیار دقیقی بر روی ویفر سیلیکونی انجام می شود تا مشخص شود که آیا در هر مرحله عملیات مربوطه به درستی انجام شده اند یا خیر. علاوه بر آن در این آزمایش ها کیفیت ساختار بلوری و بی نقصی ماندن ویفر نیز مرتبا” آزمایش می شود. پس از این مراحل چیپ هایی که نقص داشته باشند، از ویفر بریده می شوند و برای انجام مراحل بسته بندی و نصب پایه ها ی پردازنده ها به بخش ها ی ویژه ا ی هدایت می شوند. این مراحل واپسین هم دارای پیچیدگی ها ی فنی خاصی است. به عنوان مثال پردازنده های امروزی به علت سرعت بسیار بالایی که دارند در حین کار گرم می شود. با توجه به مساحت کوچک ویفر پردازنده ها و ساختمان ظریف آنها، در صورتی که تدابیر ویژه ای برای دفع حرارتی چیپ ها اندیشیده نشود، گرمای حاصل به چیپ ها آسیب خواهد رساند. بدین معنی که تمرکز حرارتی چیپ به حدی است که قبل از جریان یافتن شار حرارتی به رادیاتور خارجی پردازنده، چیپ دچار آسیب خواهد شد. برای حل این مشکل، پردازنده های امروزی در درون خود دارای لایه های توزیع دما هستند تا اولا” تمرکز حرارتی در بخش های کوچک چیپ ایجاد نشود و ثانیا” سرعت انتقال حرارت به سطح چیپ و سپس خنک کننده خارجی، افزایش یابد.

اما چیپ های آزمایش شده باز هم برای تعیین کیفیت و کارایی چندین بار آزمایش می شوند. واقعیت آن است که کیفیت پردازنده ها ی تولید شده حتی در پایان یک خط تولید و د ر یک زمان ، ثابت نیست و پردازنده ها در این مرحله درجه بندی می شوند! ( مثل میوه هایی که در چند درجه از نظر کیفیت طبقه بندی می شوند.) برخی از پردازنده ها در پایان خط تولید واجد خصوصیاتی می شوند که می توانند مثلا” تحت ولتاژ یا فرکانس بالاتری کار کنند. این موضوع یکی از دلایل اصلی تفاوت قیمت پردازنده ها است.

گروه دیگری از پردازنده ها ، دچار نقص در بخش هایی می شوند که همچنان آنها را قابل استفاده نگاه می دارد. به عنوان مثال ، ممکن است برخی از پردازنده ها در ناحیه حافظه نهان ( cache ) دچار نقص باشند. در این مورد، می توان به روش هایی بخش های آسیب دیده را از مدار داخلی پردازنده خارج ساخت. بدین ترتیب پردازنده هایی به دست می ایند که مقدار حافظه نهان کمتری دارند.

بدین ترتیب پردازنده هایی مانند celeron در اینتل و sempron در شرکت AMD ، در خط تولید پردازنده های Full cache این شرکت ها نیز تولید می شوند!

شرکت های تولید کننده پردازنده

با توجه به این که پردازنده ها دستورهای خاصی را می پذیرند و برنامه های خاصی را اجرا می کنند، طبیعتاً پردازنده های گوناگونی وجود دارند. این پردازنده ها توسط شرکت های مختلفی تولید می شوند. بعضی از آن ها مشابه و سازگارند و برخی دیگر ناسازگار. معروف ترین این شرکت ها عبارتنداز: Intel- IBM- AMD- Cyrix- Motorola- IDT- IIT- NEC- Nexgen- Rise- Metaflow- Chips & Technology معمولاً بر روی هر CPU نام شرکت تولید کننده نوشته می شود، ممکن است شماره آن نیز همراه با حرف اول و یا دو حرف اول تولید کننده نوشته شود.

تاریخچه ریزپردازنده ها

اولین ریزپردازنده در سال 1971 و با نام Intel 4004  معرفی گردید. ریزپردازنده فوق چندان قدرتمند نبود و صرفا" قادر به انجام عملیات جمع و تفریق  چهار بیتی بود. نکته مثبت پردازنده فوق، استفاده از صرفا" یک تراشه بود.قبل از آن مهندسین و طراحان کامپیوتر از چندین تراشه و یا عصر برای تولید کامپیوتر استفاده می کردند

اولین ریزپردازنده ای که بر روی یک کامپیوتر خانگی نصب  گردید ، 8080 بود. پردازنده فوق هشت بیتی و بر روی یک تراشه قرار داشت . این ریزپردازنده در سال 1974 به بازار عرضه گردید.اولین پردازنده ای که باعث تحولات اساسی در دنیای کامپیوتر شد ، 8088 بود. ریزپردازنده فوق در سال 1979 توسط شرکت IBM طراحی و اولین نمونه آن در سال 1982 عرضه گردید. وضعیت تولید ریزپردازنده توسط شرکت های تولید کننده بسرعت رشد و از مدل  8088 به 80286 ، 80386  ، 80486 ، پنتیوم ، پنتیوم II ، پنتیوم III و پنتیوم 4  رسیده است . تمام پردازنده های فوق توسط شرکت اینتل و سایر شرکت های  ذیربط طراحی و عرضه شده است . پردازنده های پنتیوم 4 در مقایسه با پردازنده 8088 عملیات مربوطه را با سرعتی به میزان 5000 بار سریعتر انجام می دهد! جدول زیر ویژگی هر یک از پردازنده های فوق بهمراه تفاوت های موجود  را نشان می دهد.

Name

Date

Transistors

Microns

Clock speed

Data width

MIPS

8080

1974

6,000

6

2 MHz

8 bits

0.64

8088

1979

29,000

3

5 MHz

16 bits
8-bit bus

0.33

80286

1982

134,000

1.5

6 MHz

16 bits

1

80386

1985

275,000

1.5

16 MHz

32 bits

5

80486

1989

1,200,000

1

25 MHz

32 bits

20

Pentium

1993

3,100,000

0.8

60 MHz

32 bits
64-bit bus

100

Pentium II

1997

7,500,000

0.35

233 MHz

32 bits
64-bit bus

~300

Pentium III

1999

9,500,000

0.25

450 MHz

32 bits
64-bit bus

~510

Pentium 4

2000

42,000,000

0.18

1.5 GHz

32 bits
64-bit bus

~1,700

 توضیحات جدول :

ستون Date نشاندهنده سال عرضه پردازنده است.    

ستون Transistors تعدا ترانزیستور موجود بر روی تراشه را مشخص می کند. تعداد ترانزیستور بر روی تراشه در سال های اخیر شتاب بیشتری پیدا کرده است.


ستون Micron ضخامت کوچکترین رشته  بر روی تراشه را بر حسب میکرون مشخص می کند. ( ضخامت موی انسان 100 میکرون است(.

         ستون Clock Speed حداکثر سرعت Clock تراشه را مشخص می نماید.


ستون Data Width پهنای باند واحد منطق و محاسبات (ALU) را نشان می دهد.

یک واحد منطق و حساب هشت بیتی قادر به انجام عملیات محاسباتی نظیر: جمع ، تفریق ، ضرب و ... برای اعداد هشت بیتی است. در صورتیکه یک واحد منطق و حساب 32 بیتی قادر به انجام عملیات بر روی اعداد  32 بیتی  است . یک واحد منطق و حساب 8 بیتی بمنظور جمع دو عدد 32 بیتی می بایست چهار دستورالعمل را انجام داده در صورتیکه یک واحد منطق وحساب 32 بیتی عملیات فوق را صرفا" با اجرای یک دستورالعمل انجام خواهد داد.در اغلب موارد گذرگاه خارجی داده ها مشابه ALU است . وضعیت فوق در تمام موارد صادق نخواهد بود مثلا" پردازنده 8088 دارای واحد منطق وحساب 16 بیتی بوده در حالیکه گذرگاه داده ئی آن هشت بیتی است . در اغلب پردازنده های پنتیوم جدید گذرگاه داده 64 بیتی و واحد منطق وحساب 32 بیتی است . ستون MIPS  مخفف کلمات ( Millions of instruction per Second  میلیون دستورالعمل در هر ثانیه ) بوده و واحدی برای سنجش کارآئی یک پردازنده است.

پردازنده وظایف اصلی زیر را برای رایانه انجام می دهد:

۱- دریافت داده ها از دستگاه های ورودی

۲- انجام عملیات و محاسبات و کنترل و نظارت بر آنها

۳- ارسال نتایج عملیات با دستگاه های خروجی

پردازنده مانند قلب رایانه است و از طریق کابلهای موجود با واحدهای دیگر مرتبط می شوند.

در واقع از نظر فنی عملکرد پردازنده با دو ویژگی تعیین می شود:

۱- طول کلید:( تعداد بیت هایی که یک پردازنده در هر لحظه پردازش می کند و طول این کلمات معمولاً ۴ و ۸ و ۱۶ و ۳۲ و یا ۶۴ بیتی می باشد).

۲- تعداد ضربان الکترونیکی که در یک ثانیه تولید شده است و با واحد مگاهرتز سنجیده می شود.

 درون یک پردازنده

یک ریزپردازنده مجموعه ای از دستورالعمل ها را  اجراء می کند. دستورالعمل های فوق ماهیت و نوع عملیات مورد نظر را برای پردازنده مشخص خواهند کرد. با توجه به نوع دستورالعمل ها ، یک ریزپردازنده سه عملیات اساسی را انجام خواهد داد :

یک ریزپردازنده با استفاده از واحد منطق و حساب خود (ALU) قادر به انجام عملیات محاسباتی نظیر: جمع ، تفریق، ضرب و تقسیم است. پردازنده های جدید دارای پردازنده های اختصاصی برای انجام عملیات مربوط به اعداد اعشاری می باشند.

یک ریزپردازنده قادر به انتقال داده از یک محل حافظه به محل دیگر است .

یک ریزپردازنده قادر به اتخاذ تصمیم ( تصمیم گیری ) و پرش به یک محل دیگر برای اجرای دستورالعمل های مربوطه بر اساس تصمیم اتخاذ شده است.

 

شکل زیر یک پردازنده ساده  را نشان می دهد.

پردازنده فوق دارای :

 ● یک گذرگاه آدرس (Address Bus)  است که قادر به ارسال یک آدرس به حافظه است. (گذرگاه فوق می تواند 8 ،16 ،32 و یا 64 بیتی باشد)

 ● یک گذرگاه داده (Data Bus) است که قادر به ارسال داده به حافظه و یا دریافت داده از حافظه است (گذرگاه فوق می تواند 8 ،16 ،32 و یا 64  بیتی باشد).

 ● یک خط برای خواندن (RD) و یک خط برای  نوشتن (WR) است که  آدرسی دهی  حافظه را انجام می دهند. آیا قصد نوشتن در یک آدرس خاص وجود داشته و یا مقصود، خواندن اطلاعات از یک آدرس خاص حافظه است؟

یک خط Clock که ضربان پردازنده را تنظیم خواهد کرد

یک خط Reset که مقدار " شمارنده برنامه " را صفر نموده و یا باعث اجرای مجدد یک فرآیند می گردد.

فرض کنید پردازنده فوق هشت بیتی بوده واز عناصر زیر تشکیل شده است:

 - ریجسترهای A,B,C  نگاهدارنده هائی بوده که از فلیپ فلاپ ها ساخته شده اند.

- شمارنده برنامه (Program Counter)  نوع خاصی از یک نگهدارنده اطلاعات است  که قابلیت افزایش بمیزان یک و یا پذیرش مقدار صفر را دارا است

- واحد منطق و حساب (ALU) می تواند یک مدار ساده جمع کننده هشت بیتی بوده و یا مداری است که قابلیت انجام عملیات جمع ، تفریق ، ضرب و تقسیم را دارا است .

- ریجستر Test یک نوع خاص نگاهدارنده بوده که قادر به نگهداری نتایج  حاصل از انجام مقایسه ها توسط ALU است. ALU قادر به مقایسه دو عدد وتشخیص مساوی و یا نامساوی بودن آنها است . ریجستر Test همچنین قادر است یک Carry bit  که ماحصل آخرین مرحله عملیات جمع  است را نگهداری کند . ریجستر فوق مقادیر مورد نظر را در فلیپ فلاپ ها ذخیره و در ادامه Instruction Decoder "تشخیص دهنده دستورالعمل ها " با استفاده از مقادیر فوق قادر به اتخاذ تصمیمات لازم خواهد بود.

- ریجستر Instruction و Instruction Decoder مسئولیت کنترل سایر عناصر را برعهده خواهند داشت . بدین منظور از خطوط کنترلی متفاوتی استفاده می گردد. خطوط فوق در شکل فوق نشان داده نشده اند ولی می بایست قادر به انجام عملیات زیر باشند:

 - به ریجستر A اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

به ریجستر B اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

- به ریجستر C اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

-  به " شمارنده برنامه " اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

-  به ریجستر Address اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

به ریجستر Instruction اعلام نماید که مقدار موجود بر روی گذرگاه داده را در خود نگاهدارد.

- به " شمارنده برنامه " اعلام نماید که مقدار خود را افزایش دهد.

- به " شمارنده برنامه " اعلام نماید که مقدار خود را صفر (Reset) نماید.

به واحد منطق و حساب نوع عملیاتی را که می بایست انجام گیرد، اعلام نماید.

- به ریجستر Test اعلام نماید که بیت های ماحصل عملیات ALU را در خود نگاهدارد.

) RD _  خواندن (

) WR _ نوشتن (

ریجستر و Cache

با توجه به سرعت بسیار بالای پردازنده حتی در صورت استفاده از Bus عریض وسریع همچنان مدت زمانی طول خواهد کشید تا داده ها از حافظه RAM برای پردازنده ارسال گردند. Cache با این هدف  طراحی شده است که داده های مورد نیاز پردازنده را که احتمال استفاده از آنان  بیشتر است ، در دسترس تر  قرار دهد . عملیات فوق از طریق بکارگیری مقدار اندکی از حافظه   Cache  که Primary و یا Level 1 نامیده می شود صورت می پذیرد. ظرفیت حافظه های فوق بسیار اندک بوده و از دو کیلو بایت تا شصت و چهار کیلو بایت را، شامل می گردد.  نوع دوم Cache  که Secodray و یا level 2 نامیده می شود بر روی یک کارت حافظه و در مجاورت پردازنده قرار می گیرد. این نوع Cache دارای یک ارتباط مستقیم با پردازنده است. یک مدار کنترل کننده  اختصاصی بر روی برد اصلی که " کنترل کننده L2 " نامیده می شود مسئولیت عملیات مربوطه  را برعهده خواهد گرفت . با توجه به نوع پردازنده ، اندازه حافظه فوق متغیر بوده و دارای  دامنه ای بین 256Kb تا 2MB است. برخی از پردازنده های با کارائی بالا اخیرا" این نوع Cache را بعنوان جزئی جداناپذیر در کنار خود دارند. ( بخشی از تراشه  پردازنده ) در این نوع پردازنده ها با توجه به اینکه  Cache  بخشی از پردازنده محسوب می گردد، اندازه آن متغیر بوده و بعنوان یکی از مهمترین شاخص ها در کارائی پردازنده مطرح است.

دستورالعمل های ریزپردازنده

هر ریزپردازنده دارای مجمو عه ای از دستورالعمل ها بوده که دارای کارآئی خاصی می باشند. این دستورالعمل ها بصورت الگوئی از صفر و یا یک پیاده سازی می گردنند. استفاده از دستورات فوق با توجه به ماهیت الگوئی آنها برای انسان مشکل و بخاطر سپردن آنها امری است مشکل تر! ، بدین دلیل از مجموعه ای  " کلمات " برا ی مشخص نمودن الگوهای فوق استفاده می گردد. مجموعه " کلمات " فوق " زبان اسمبلی " نامیده می شوند. یک " اسمبلر" قادر به ترجمه کلمات به الگوهای بیتی متناظر است .پس از ترجمه ، ماحصل عملیات که همان استخراج " الگوهای بیتی " است، در حافظه مستقر تا زمینه اجرای آنها توسط ریزپردازنده فراهم گردد.

 جدول زیر برخی از دستورالعمل های مورد نیاز در رابطه با پردازنده فرضی را نشان می دهد.

Instruction

Meaning

LOADA mem

لود نمودن ریجستر A از آدرس حافظه

LOADB mem

لود نمودن ریجستر B از آدرس حافظه

CONB con

لود نمودن یک مقدار ثابت در ریجستر B

SAVEB mem

ذخیره نمودن مقدار موجود در ریجستر B در یک آدرس حافظه

SAVEC mem

ذخیره نمودن مقدار موجود در ریجستر C در یک آدرس حافظه

ADD

جمع  A و B و ذخیره کردن حاصل در C

SUB

تفریق A و B و ذخیره کردن حاصل در C

MUL

ضرب  A و B و ذخیره کردن حاصل در C

DIV

تقسیم  A و B و ذخیره کردن حاصل در C

COM

مقا یسه  A و B و ذخیره کردن حاصل در Test

JUMP addr

پرش به یک آدرس مشخص

JEQ addr

پرش شرطی ( اگر مساوی است ) به یک آدرس مشخص

JNEQ addr

پرش شرطی ( اگر نا مساوی است ) به یک آدرس مشخص

JG addr

پرش شرطی ( اگر بزرگتر است ) به یک آدرس مشخص

JGE addr

پرش شرطی ( اگر بزرگتر و یا مساوی است ) به یک آدرس مشخص

JL addr

پرش شرطی ( اگر کوچکتر است ) به یک آدرس مشخص

JLE addr

پرش شرطی ( اگر کوچکتر و یا مساوی است ) به یک آدرس مشخص

STOP

توقف اجراء

 مثال : فرض کنید برنامه محاسبه فاکتوریل عدد پنج (5!=5*4*3*2*1 ) با یکی از زبانهای سطح بالا نظیر C نوشته گردد . کمپایلر ( مترجم  زبان C برنامه مورد نظر را به زبان اسمبلی ترجمه خواهد کرد). ( فرض کنید که آدرس شروع RAM در پردازنده فرضی 128 و آدرس شروع حافظه ROM صفر باشد.) جدول زیر برنامه نوشته شده به زبان C را بهمراه کد ترجمه شده اسمبلی  معادل آن، نشان می دهد.

C Program

 Assembly Language

a=1;
f=1;
while (a <= 5)
{
    f = f * a;
    a = a + 1;
}

// Assume a is at address 128
// Assume F is at address 129
0   CONB 1      // a=1;
1   SAVEB 128
2   CONB 1      // f=1;
3   SAVEB 129
4   LOADA 128   // if a > 5 the jump to 17
5   CONB 5
6   COM
7   JG 17
8   LOADA 129   // f=f*a;
9   LOADB 128
10  MUL
11  SAVEC 129
12  LOADA 128   // a=a+1;
13  CONB 1
14  ADD
15  SAVEC 128
16  JUMP 4       // loop back to if
17  STOP

در نهایت برنامه ترجمه شده  به زبان اسمبلی به زبان ماشین ( الگوهای بیتی )  ترجمه خواهد شد.

Assembly Language

Bit Patterns

// Assume a is at address 128
// Assume F is at address 129
0   CONB 1      // a=1;
1   SAVEB 128
2   CONB 1      // f=1;
3   SAVEB 129
4   LOADA 128   // if a > 5 the jump to 17
5   CONB 5
6   COM
7   JG 17
8   LOADA 129   // f=f*a;
9   LOADB 128
10  MUL
11  SAVEC 129
12  LOADA 128   // a=a+1;
13  CONB 1
14  ADD
15  SAVEC 128
16  JUMP 4       // loop back to if
17  STOP

// Assume a is at address 128
// Assume F is at address 129
Addr opcode/value
0    3             // CONB 1
1    1
2    4             // SAVEB 128
3    128
4    3             // CONB 1
5    1
6    4             // SAVEB 129
7    129
8    1             // LOADA 128
9    128
10   3             // CONB 5
11   5
12   10            // COM
13   14            // JG 17
14   31
15   1             // LOADA 129
16   129
17   2             // LOADB 128
18   128
19   8             // MUL
20   5             // SAVEC 129
21   129
22   1             // LOADA 128
23   128
24   3             // CONB 1
25   1
26   6             // ADD
27   5             // SAVEC 128
28   128
29   11            // JUMP 4
30   8
31   18            // STOP

 

همانگونه که مشاهده می نمائید برنامه نوشته شده به زبان C  به 17 دستورالعمل معادل اسمبلی و 31 دستورالعمل زبان ماشین تبدیل گردید.

 Instruction Decoder ( تشخیص دهنده نوع دستورالعمل ها ) با انجام  عملیاتی خاص، نوع دستورالعمل را تشخیص خواهد داد. فرض کنید دستور العمل ADD را داشته باشیم و بخواهیم  نحوه تشخیص دستورالعمل را دنبال نمائیم :

 - در زمان اولین Clock ، دستورالعمل Load می گردد. ( فعال کردن بافر tri-state برای " شمارنده برنامه، فعال شدن خط RD ، فعال کردن Data-in در بافر)

- در زمان دومین  Clock ، دستورالعمل ADD تشخیص داده خواهد شد.( تنظیم عملیات جمع برای ALU ، ذخیره نمودن ماحصل عملیات ALU در ریجستر C )

- در زمان سومین Clock،  " شمارنده برنامه " افزایش خواهد یافت ( در تئوری این مرحله می تواند در زمان دومین Clock نیز صورت پذیرد)

همانگونه که ملاحظه گردید ،  هر دستورالعمل اسمبلی دارای چندین Clock Cycle است . برخی از دستورات نظیر ADD دارای دو و یا سه Clock و برخی دیگر از دستورات دارای پنج ویا شش Clock خواهند بود.

از دیگر مشخصات و اصطلاحات این مبحث میتوان به BUS اشاره کرد. واحد پردازشگر مرکزی برای ارتباط با دنیای خارج خود میتواند حجم خاصی اطلاعات را دریافت و یا ارسال کند.این گذرگاه را با نام باس میشناسیم و یکای ان را مگاهرتز می نامیم.

در بررسی سی پی یو ها به اصطلاحی دیگر احتمالا برخورد کرده این با نام Cache ( کش ). کش به حافظه ای بسیار سریع و گران قیمت گفته میشود که همیشه مقدار کمی از ان در سی پی یو تعبیه میشود...کار کش نگهداری اطلاعاتی برای سی پی یو است که در هنگام پردازش اطلاعات به انها نیاز سریع دارد.

حافظه ی کش در سه سطح وجود دارد و با حجم های مختلف. سطح اول یا  L1سطح دوم یا  L2و سطح جدید L3 ...معمولا کش L1 را بر روی خود سی پی یو قرار میدهند و به همین دلیل ان را INTERNA CACHE می نامند ولی کش L2 بر روی بورد اصلی (Main Board) تعبیه میشود و ان را EXTERNAL CACHE میخوانند.

نسل های پردازنده ها

مهم ترین عامل شناسایی پردازنده ها، نوع آنها می باشد که با شماره و یا نام اختصاصی مشخص می شود. از بین پردازنده های تولید شده نوع اینتل و موتورولا متداولتر از بقیه هستند. موتورولا پردازنده خود را به صورت ۸۶xxx یا نام اختصاصی و اینتل به صورت ۸۰x86 یا نام اختصاصی خود به بازار معرفی نمودند. بدین صورت x می تواند یک عدد دلخواه یک رقمی باشد که هر چه مقدار آن بیشتر باشد در نتیجه رقم آن بزرگ تر بوده و پردازنده جدید تر، سریعتر و کاراتر می باشد. قبل از پردازنده پنتیوم پردازنده ها یک شماره ۵ رقمی داشتند که دو رقم سمت چپ معمولاً نام پردازنده و سه رقم سمت راست نسل پردازنده رامشخص می کنند.

برخی سازندگان دیگر به جای شماره از نام های اختصاصی مانند K5 و K6 استفاده می نمودند.

موارد موثر بر روی کارایی یک پردازنده

1:سرعت پردازنده

یکی از مواردی که مستقیاً روی کارآیی پردازنده اثر می گذارد سرعت آن است که معمولاً بر روی آن نوشته می شود. هر چه پردازنده سریعتر باشد اطلاعات را سریعتر پردازش می کند. سرعت پردازنده ها بر حسب مگاهرتز بیان می شود و یک مگاهرتز، معادل یک میلیون چرخه در ثانیه است. بعضی تولید کنندگان سرعتی که بر روی پردازنده می نویسند واقعی نیست، بلکه آنها توانمندی پردازنده در مقابل اینتل را می سنجند و به آن سرعت معادل پنتیوم می گویند. عوامل مؤثر در کارآیی پردازنده فرکانس ساعت یا سرعت ساعت است که معمولاً به دو صورت می باشد:

 ۱- سرعت ساعت داخلی: در این حالت پردازنده عملیات داخلی خود را براساس این ساعت انجام می دهد، این سرعت برابر سرعتی است که بر روی پردازنده ذکر شده است. در هنگام فروش نیز این سرعت را معرفی می کنند. مانند:P4/2.2Ghz

۲- سرعت ساعت خارجی (سرعت گذرگاه سیستم): این سرعت درواقع مدار الکترونیکی است که خارج از تراشه قرار دارد و به پایه های مربوط به ساعت وصل می شود. اطلاعات خارج از پردازنده مانند اطلاعات حافظه اصلی رایانه بر این اساس سنجیده می شود.

2: ولتاژ پردازنده

در ابتدای ساخت پردازنده ها از ولتاژ ۵ ولتی به صورت استاندارد استفاده می شد، اما پس از ورود پردازنده های «۴۸۶ دی ایکس ۴» و «پنتیوم» از ولتاژهای پایین تر مانند ۸/۲ و ۳/۳ نیز استفاده می شود.

3:جایگاه پردازنده

پردازنده معمولاً بر روی شبکه ای از سوراخ های کوچک بر روی مادربرد قرار می گیرد. به طور کلی تراشه گیر، محلی برای نصب پردازنده یا هر نوع آی سی است.

پردازنده معمولاً روی مادربرد لحیم نمی شود تا بتوان آن را ارتقا یا تعویض نمود.

4: گرماگیر پردازنده

پردازنده ها در زمان کار کردن گرمای زیادی تولید می کنند و اگر این گرما دفع نشود ممکن است پردازنده بسوزد. برای خنک نگه داشتن پردازنده از چند روش استفاده می کنند:

۱- استفاده ازFan : قرارگیری یک پنکه کوچک بر روی پردازنده باعث حرکت هوا و هدایت گرما به بیرون می شود. معمولاً در جعبه اصلی رایانه پنکه ای برای بیرون بردن گرما وجود دارد. با این حال قرار دادن یک پنکه کوچک پردازنده را بهتر خنک می کند و کارآیی رایانه بالا می رود. بعضی از پنکه ها برای اتصال به پردازنده دارای یک گیره می باشد که باید توجه نمود در هنگام نصب نباید به مادربرد برخورد کند.

۲- استفاده از گرماگیر: گرماگیر وسیله ای فلزی است که حرارت تولید شده را به وسیله یک قطعه الکتریکی جذب و به بیرون می فرستد. گرماگیر دارای پره های فلزی یا سرامیکی است.

راههای تشخیص پردازنده تقلبی

جهت تشخیص پردازنده های تقلبی از اصل می توان از روش های زیر استفاده نمود:

۱- روش چشمی: کج بودن نوشته های روی پردازنده - کم رنگ بودن نوشته ها - وجود خراش - وجود رنگ پریدگی چاپ قبلی - کوچک و بزرگ بودن حروف و عددها

۲- شماره سریال: جهت دریافت شماره سریال های واقعی می توانید از برنامه ID CPUاستفاده نمایید و یا به سایت پردازنده مربوطه متصل شوید.

۳- اطلاعات بایوس.

۴- اطلاعات برنامه های عیب یاب.

بررسی انواع پردازنده پنتیوم :

× . پردازنده های پنتیوم 75،90،100،120،133 مگاهرتزی با تکنولوژی کاهش ولتاژ (VRT) در بسته های 320 پایه ای TCP و 296 پایه ای SPGA  موجود می باشد . بسته های TCP می روند تا با قدرت و عملکرد کامپیوتر های معمولی ، با ملاحظاتی که در ساختار الکتریکی و مکانیکی آنها صورت گرفته است ، به رقابت برخیزند . در پردازنده های 100 تا 133 مکاهرتزی پنتیوم بیش از 3 میلیون ترانزیستور از نوع CMOS  که مصرف انرژی کمی دارند استفاده می شود . مثلا پردازنده پنتیوم 133 مگاهرتزی با سرعت بیش از 30% نسبت به پنتیوم 100 مگاهرتزی توان الکتریکی مصرفی برابر دارد .

× . پردازنده پنتیوم II :این پردازنده همان هسته معماری پنتیوم پرو را دارد شرکت اینتل به این پردازنده تکنولوژی MMX  اضافه کرده است . تکنولوژی MMX  یک پدیده جدید است که روی تراشه های پردازنده اعمال شده و عملیات چند رسانه ای را در کامپیوتر های جدید بهتر می کند . پردازنده های پنتیوم که خاصیت MMX  را دارند 57 دستورالعمل چند رسانه ای اضافه دارند ، علاوه بر این شرکت اینتل برای پردازنده پنتیوم II  خاصیت جدید را طراحی کرده که آنها تحت سیستم عامل های 16 بیتی و 32 بیتی به خوبی کار می کند . پردازنده پنتیوم II  از نظر بسته بندی با پنتیوم پرو متفاوت است ، در این نوع به جای آنکه یک حافظه کش ثانویه پر سرعت در یک بسته بندی سرامیکی تراشه پردازنده وجود داشته باشد در پنتیوم II  این حافظه روی یک قطعه برد الکترونیکی و تا 512 کیلوبایت حافظه کش L2  وجود دارد و کل پردازنده و حافظه کش آن روی یک کارتریج به اندازه کف دست با اتصال یک لبه ای قرار دارد . اصل پردازنده در مرکز برد قرار داشته و حافظه کش از L2  آن  را احاطه کرده است . باید توجه داشت که کارایی حافظه کش بیشتر L2 در پنتیوم  II  پنتیوم پرو کمتر است اما سرعت بر حسب ساعت پنتیوم II است . شرکت اینتل دو تغییر مهم را در ساخت پنتیوم II  اعمال کرده است :

اولا نوشتن در ثبات سگمنت را سریعتر کرده و ثانیا مجموعه دستورالعمل های MMX  را نیز اضافه کرده است . L2  هر چند پنتیوم II  کمتر از 6 میلیمتر از پنتیوم پرو بزرگتر است ولی بیش از 2 میلیون ترانزیستور از آن بیشتر دارد. با وجود این حافظه کش مربوط به پنتیوم شده II  از پنتیوم پرو آهسته تر عمل می کند ولی جدا کردن حافظه کش باعث کاهش بسزایی در قیمت و هزینه ساخت پردازنده پنتیوم II  است .

-  از آنجاییکه پنتیوم II  با بهره گیری از خصوصیت تکنولوژی گذرگاه دوگانه مستقل DIB (duall independent bus)  که یکی مربوط به حافظه کش L2  و دیگری گذرگاه پردازنده به حافظه اصلی تشکیل شده است ، توانایی بکارگیری هر دو گذرگاه را به صورت همزمان دارا می باشد . این مسئله باعث شده سرعت انتقال اطلاعات در پردازنده پنتیوم II  دو برابر پردازنده های با معماری یک BUS  بیشتر باشد .

-    گذرگاه دو گانه مستقل در پنتیوم II  باعث شده انتقالات همزمان موازی را مهیا سازد که سریعتر از انتقالات سریع می باشد . این عمل پهنای باندی به اندازه 3 برابر پهنای باند پردازنده های با گذرگاه واحد را مهیا ساخته است .

-      در پردازنده پنتیوم II  از درگاه گرافیکی شتاب دار AGP  استفاده می شود تا عملیات گرافیکی را با فراهم آوردن پهنای باند حافظه بسیار وسیع را برای زیر سیستم های گرافیکی توسعه خواهد داد.

- یک خصوصیت جالب دیگر برای پنتیوم با II  باید به این نکته اشاره کرد که نرم افزار ها برای به دست آوردن یک کارایی بهبود یافته روی پردازنده های پنتیوم II  نیازی به ترجمه مجدد ندارد بلکه پنتیوم II  همه برنامه های کاربردی موجود روی PC  سازگار است .

پردازنده های پنتیوم اینتل

کلمه پنتیوم ترکیبی است از کلمه یونانی پنتا به معنی پنج و پسوند ایم که حاکی از این است که این پردازنده از نسل پنجم تولیدات شرکت اینتل می باشد . از نظر کارایی پنتیوم می تواند عملیات را در کد عدد صحیح تقریبا دو برابر سریعتر از یک پردازنده 486 با فرکانس پالس برابر انجام دهد . پنتیوم به عنوان یک پردازنده 64 بیتی تحولی عظیم در صنعت کامپیوتر از نظر سرعت در پردازش داده ها به وجود آورده است . از جمله مزیت های پنتیوم می توان به خصوصیات ساختمان داخلی آن به شرح ذیل اشاره نمود :

× . پیشرفت و توسعه واحد عملیات ممیز شناور که باعث بالا رفتن سرعت اجرای نرم افزارهایی که کارهای محاسباتی زیادی را انجام می دهند شده است .

× . طراحی سوپر اسکالر و pipeline دوبله که امکان اجرای بیشتر از یک دستورالعمل در هر سیکل ساعت را فراهم نموده است .

× . وجود دو عدد حافظه cache  داخلی یکی برای داده ها و دیگری برای دستورالعمل ها که به افزایش سرعت پردازنده کمک می کند .

× . مدارات پیش بینی پرشی که محل بعدی دستورالعمل ها را پیش بینی می کند .

× . وجود کنترل داخلی parity  اشتباهات پردازش داخلی را کشف می کند .

× . عملیات مدیریت توان مصرفی به پایین آوردن توان مصرفی و افزایش طول عمر و ایمنی پردازنده کمک می کند .

پردازنده پنتیوم یک تراشه 273 پایه است که از نظرداخلی  32 بیتی طراحی شده و رجیستر های عمومی و آدرس آن نیز شبیه 486 است . یکی از ویژگی های مهم پنتیوم کار حدس و پیش بینی دستورالعمل ها است . می دانیم که یکی از موانعی که بر سر راه بالابردن کارایی پردازنده وجود دارد ، حالتهای پرش متعددی است که ممکن است در یک دستور وجود داشته باشد . پیش بینی پرش روی انتخاب بهترین و محتمل ترین حالت است .

انتقال سریع اطلاعات حافظه یکی دیگر از ویژگی های پردازنده های پنتیوم می باشد . در این پردازنده ها واحد که  bus رابط خارجی تراشه را کنترل می کند ، شبیه یک کنترل کننده ترافیک عمل کرده ، و جریان اطلاعات بین دستگاه های خارجی و ساختمان داخلی پنتیوم را از طریق یک گذرگاه 64 بیتی اطلاعات و یک گذرگاه 32 بیتی آدرس کنترل می کند . از نظر ساختار داخلی واحد ، bus (bu)   متصل به حافظه های cache  اطلاعات آدرس و واحد صفحه بندی حافظه (paging unit) بوده که در عین حال توازن (parity) اطلاعات و آدرس را نیز کنترل کرده و امکان انتقال حجمی از حافظه را نیز میسر می سازد . پردازنده پنتیوم قابلیت خواندن یا نوشتن تعداد زیادی از حافظه خارجی را نیز افزایش داده است. حداکثر سرعت این امر در پنتیوم با پالس 66 مگاهرتز برابر 528 مگابایت بر ثانیه بوده که سرعتی بیش از دو برابر سرعت 486DX II  می باشد .

علاوه بر خواص بالا پردازنده پنتیوم دارای خصوصیات جدید و توسعه یافته دیگری نیز می باشد . این خاصیت adress pipelining  است که یک ارتباط با خانواده 487 را ممکن می سازد . این خصوصیت اجازه توسعه دو سیکل گذرگاه در یک لحظه را ممکن ساخته و در سیستم هایی که حافظه کندتر دارند مفید می باشد .

  پردازشگر های ۶۴ بیتی

محدودیتی که در دامنه پردازش‌های 32 بیتی وجود دارد، همواره باعث کندشدن سرعت انجام عملیات پیچیده و سنگین اطلاعاتی در سیستم‌های مختلف می‌گردد. به همین‌منظور بسیاری از شرکت‌های سازنده نرم‌افزار و خصوصاً آن‌هایی که در زمینه سیستم‌عامل فعالیت دارند از دیرباز رقابتی را برای تحت پوشش قراردادن تعداد زیادتری CPU و مقدار بیشتری حافظه RAM نسبت به یکدیگر آغاز کرده‌اند. به عنوان مثال رقابتی که بین ویندوز 2000 سرور با سولاریس یا انواع یونیکس و لینوکس بر سر امکان استفاده از 8 یا 16 تا 32 پردازنده به همراه چند گیگابایت حافظه RAM و امثال آن وجود داشت همواره یکی از جالب‌ترین و پرسروصداترین زمینه رقابت بین چند سیستم‌عامل به‌شمار می‌رفت. اما تمام این عوامل چندی پیش تحت‌الشعاع واژه جدیدی به نام پردازش 64 بیتی قرار گرفت. این فناوری جدید که به لطف به بازار آمدن دو محصول جدید از دو شرکت معتبر سازنده پردازنده یعنی اینتل و AMD شکل گرفت، در مدت کوتاهی توانست توجه سازندگان سیستم‌عامل را به شدت معطوف کارایی بی‌نظیر خود کند.

پردازنده‌های Xeon و ایتانیوم از سوی اینتل و پردازنده Opteron از طرف AMD طی مدت کوتاهی توجه تمام سازندگان مشهور سرورهای Enterprise و همچنین تولیدکنندگان سیستم‌عامل را به خود جلب کرد. در این میان مایکروسافت نیز بلافاصله اقدام به طراحی نسخه‌ای از ویندوز 2003 سرور برمبنای انجام پردازش‌های 64 بیتی و با استفاده از پردازنده‌های جدید نمود. این نسخه جدید 64 بیتی از چند نظر بر نسخه پیشین خود برتری داشت. اول این‌که از میزان حافظه فیزیکی و مجازی بیشتری پشتیبانی می‌کند.

دوم‌ این‌که در مقایسه با نسخه 32 بیتی از کارایی و سرعت بالاتری در مدیریت حافظه، رجیسترها و عملیات I/O   برخوردار است. نکته سوم در مورد امنیت است. نسخه 64 بیتی قابلیت محافظت بیشتری در برابر کدهای مخرب(Malicious Code) از خود نشان می‌دهد. طبق پیش‌بینی‌های انجام گرفته تا پایان سال 2005 میلادی کلیه کامپیوترهایی که قرار است نقش سرور را در مراکز بزرگ اقتصادی داشته باشند به سمت ریزپردازنده و سیستم‌عامل 64 بیتی سوق پیدا خواهند کرد. همین پیش‌بینی حاکی از تمایل شدید کامپیوترهای دسک تاپ به سمت استفاده از تکنولوژی 64 بیتی تا پایان سال 2006 میلادی است.

براین‌اساس به تدریج نه تنها سازندگان سیستم‌عامل مثل مایکروسافت سیستم‌عامل 64 بیتی مختص کامپیوترهای دسکتاپ (Windows XP 46 bit) را به بازار عرضه می‌کنند، بلکه سایر تولیدکنندگان نرم‌افزارهای مختلف هم با وارد شدن به دنیای پردازش‌های 64‌بیتی، کارایی و سرعت جدیدی را به کاربران خود ارایه می‌دهند.

مقایسه پردازنده های 32 بیتی با 64 بیتی

در یک سیستم‌عامل 32 بیتی مثل نسخه‌های 32 بیتی ویندوز 2003 از یک حافظه مجازی (Virtual memory) برای انجام پردازش‌های مختلف استفاده می‌شود. این حافظه مجازی که حداکثر 4 گیگابایت می‌تواند ظرفیت داشته باشد به دو قسمت تقسیم می‌شود. یک قسمت 2 گیگابایتی آن به وسیله برنامه در حال اجرا اشغال شده و 2 گیگابایت دیگر در اختیار سیستم‌عامل قرار می‌گیرد.

تا اینجا همه ‌چیز بسیار عادی به نظر می‌رسد اما مشکل زمانی پیش می‌آید که 2 گیگابایت سهم برنامه‌های در حال اجرا به مرز پرشدن نزدیک می‌شود. به عنوان مثال یک بانک اطلاعاتی SQL Server را در نظر بگیرید که برای اتصال هر کاربر به سرور و انجام عملیات موردنظر وی 20 مگابایت حافظه مجازی را در نظر می‌گیرد. با رسیدن تعداد کاربران به مرز یکصد نفر، کل حافظه مجازی 2 گیگابایتی در اختیار SQL Server قرار می‌گیرد و این به معنای نزدیک شدن سیستم به یک نقطه بحرانی در عملیات سرویس‌دادن به کاربران است.

در نسخه‌های 32 بیتی یکی از راه‌هایی که برای این مساله در نظر گرفته می‌شد، اختصاص 3 گیگابایت از حافظه مجازی به برنامه‌های درحال‌اجرا بود. این روش که با استفاده از دستکاری در فایل boot.ini انجام می‌گرفت، یک گیگابایت از حافظه مجازی در اختیار سیستم‌عامل را به سهمیه حافظه مجازی برنامه‌های در حال اجرا واگذار می‌کرد و تا حدودی مشکل کمبود حافظه مجازی را رفع می‌کرد. اما خود این عمل هم عوارض جانبی خاص خود را دارد و آن محدود شدن کرنل سیستم‌عامل به یک گیگابایت حافظه مجازی برای انجام عملیات cache است.

این محدود شدن باعث افت سرعت انتقال اطلاعات از سرور به کلاینت‌ها می‌شود. ضمن این‌که باز هم در نهایت با زیادترشدن تعداد کاربران یا پردازش‌های موردنظر آنان، این 1 گیگابایت الحاق‌شده نیز به مرز اشتغال شدن کامل نزدیک می‌شود و مدیران سیستم را به ناچار مجبور به افزایش تعداد سرورها برای رفع مشکل می‌کند. با آمدن ویندوز 2003 نسخه 32 بیتی، قدرت آدرس‌دهی سیستم‌عامل برای حافظه‌های فیزیکی (RAM) به 32 گیگابایت برای نسخه Enterprise و 64 گیگابایت در نسخه DataCenter افزایش یافت و این به معنای نیاز کمتر سیستم به استفاده از حافظه مجازی و در نتیجه کمتر شدن مشکل مربوط به محدودیت حافظه‌های مجازی بود.

اما به هر حال استفاده از حافظه مجازی برای پردازش اطلاعات امری گریزناپذیر است و به‌همین دلیل توجه سازندگان سیستم‌عامل همواره معطوف به پیدا کردن راه‌حلی برای عبور از این مشکل بود. سرانجام با مطرح شدن و تولد سیستم‌عامل 64 بیتی ویندوز 2003 که با استفاده از قدرت پردازنده‌های 64 بیتی جدید قادر بود از یک سیستم آدرس‌دهی 40 بیتی استفاده کند، میزان حافظه مجازی قابل دسترسی سیستم از 4 گیگابایت به 40 2 یعنی 16 ترابایت (هزار گیگابایت) افزایش یافت.

بدین‌ترتیب 8 ترابایت از این ظرفیت در اختیار برنامه‌های در حال اجرا و 8 ترابایت دیگر در اختیار سیستم‌عامل قرار گرفت. مهم‌ترین سوالی که در این‌جا می‌توانست مطرح شود این است که آیا برنامه‌های سابق محیط 32 بیتی که برای استفاده از حداکثر 3 گیگابایت حافظه مجازی کامپایل شده‌اند قادر به بهره بردن از این 8 ترابایت فضای جدید هستند یا خیر. پاسخ این سوال هم می‌تواند مثبت باشد و هم منفی. بدین‌صورت که برخی برنامه‌های کامپایل‌شده در محیط‌های 32 بیتی که به صورت صریح قدرت استفاده از حداکثر 3 گیگابایت حافظه مجازی را دارند، با ورود به محیط 64 بیتی هیچ تغییری را احساس نخواهند کرد.

اما برخی دیگر که با تکنولوژی Large Addressware کامپایل شده‌اند قادر خواهند بود تا 4 گیگابایت از حافظه مجازی را در محیط جدید مورد استفاده قرار دهند. از لحاظ سرعت انجام عملیات نیز برخی برنامه‌های کامپایل شده در محیط 32 بیتی (مثلاً برنامه‌های نوشته شده با ASP.NET که از تکنولوژی Multithreading برای اجرای موازی چند دستورالعمل در آن واحد استفاده می‌کنند)، به دلیل قدرت بی‌نظیر پردازنده‌های 64 بیتی در انجام این کار می‌توانند از مزایای محیط جدید اجرا استفاده کرده و سرعت اجرای خود را افزایش دهند.

اما اگر برنامه‌ای (مثلاً یک فایل Exe) در محیط توسعه‌ای مثل ویژوال بیسیک نسخه ششم برای دسترسی به یک پایگاه داده و کار با آن بدون استفاده از مکانیسم پردازشی موازی و به صورت ساده نوشته شده باشد، این برنامه حتی اگر برروی یک سرور 64 بیتی هم اجرا شود نمی‌تواند از قابلیت‌های محیط جدید سودی ببرد. بنابراین اگر قرار است این برنامه برروی کلاینت نصب شده و پایگاه داده موردنظر که SQL Server است برروی یک سرور باشد، بهتر آن است که کلاینت در همان وضعیت 32 بیتی باقی بماند و سرور به نسخه 64 بیتی ویندوز 2003 ارتقاء داده‌شود.

در این صورت موتور بانک‌اطلاعاتی SQL Server که در تمام نسخه‌های خود از شیوه Multithreading برای انجام دستورات موردنظر کاربران استفاده می‌کند، می‌تواند در محیط جدید با سرعت بهتری فرامین رسیده از طرف کلاینت‌ها را پردازش کرده و نتیجه را سریع‌تر به آن‌ها برگرداند و کارایی کلی این سیستم بانک اطلاعاتی را به نحو مطلوبی افزایش دهد. اصولاً برنامه‌های نوشته شده برای محیط‌های 32 بیتی با استفاده از رابطی به نام WOW64 قادر خواهند بود در محیط 64 بیتی اجرا شوند و از مزایای ارتقاء سیستم عامل و دسترسی به حافظه بیشتر بهره ببرند.

نکاتی در مورد تراشه های 64 بیتی

مهمترین مزیت تراشه های ۶۴ بیتی برای تولید کننده های برنامه های دیجیتالی ، امکان آدرس دهی منطقه بیشتری از حافظه توسط پردازشگر است .

یک پردازشگر ۳۲ بیتی در هر لحظه ، بیشتر از ۴ گیگابایت داده را نمی تواند پردازش کند و وقتی به مقدار ۴ گیگابایت می رسد شروع به فرستادن داده ها به دیسک سخت می کند که باعث کند شدن سرعت پردازشگر می شود .

کاربران خصوصاً آن دسته از کاربرانی که مجموعه داده هایشان فراتر از ۴ گیگابایت است ، به این مقدار دیوار یا مرز ۴ گیگابایتی می گویند ، زیرا داده هایشان در این نقطه با سرعت کمتری پرازش می شود و کارایی سیستم پایین می آید . اما پردازشگر های ۶۴ بیتی ، در هر لحظه ، قدرت پردازش ۱۶ گیگابایت داده را دارند که برای مجموعه داده های بزرگ بسیار مفید تر است زیرا پردازش آن ها سریعتر انجام می شود .

به این معنی که تولید کنندگان برنامه های دیجیتالی ، نیازی به خرید نسخه ۶۴ بیتی برنامه مورد علاقه خود ندارند بلکه می توانند برنامه های ۳۲ بیتی خود را با همان سرعت و یا حتی سریع تر از قبل اجرا کنند . ( ناگفته نماند که نسخه ۶۴ بیتی بسیاری از نرم افزار ها هنوز به بازار نیامده است . )

مثلا یک طراح تصاویر انیمیشن که با یکی از نرم افزار های ۳۲ بیتی کار می کند را در نظر بگیرید . بعلت ۳۲ بیتی بودن پردازشگر ، هنگام راندو تصاوی سرعت پایین می آید زیرا حجم داده ها زیاد است .

حال این طراح به راحتی و بدون تغییر نسخه نرم افزار خود به ۶۴ بیتی ، در همان محیط قبلی تصاویر خود را طراحی کرده ولی هنگام راندوی آنها ، پرداشگر ۶۴ بیتی کمک بزرگی در کاهش زمان پردازش به او خواهد کرد .

بنابراین نرم افزار های ۳۲ بیتی در سیستم هایی که پردازشگر ۶۴ بیتی دارند به راحتی اجرا شده و نیازی به تبدیل نسخه نرم افزار نیست . علاوه بر آن ، تراشه اپترون ، از ساختار انتقال سریع AMD تبعیت می کند که باعث توانایی بیشتر برای انجام عملیات چند پردازشی می شود . برای راه اندازی یک سرور ، حداکثر ۸ تراشه اپترون و برای راه اندازی یک ایستگاه کاری ، حداکثر ۴ تراشه قابل استفاده است .

ویژگی هایLGA775 و سوکت Prescott

      I.            تکنولوژی Hyper-Threading

  II.            تکنولوژی Hyper Pipelined

III.            مجموعه دستورات Streaming SIMD Extension 3

IV.            گذرگاه سیستم با فرکانس 800MHz

    V.            اجرای پویا و پیشرفته دستورات

VI.            حافظه نهان L2 با ظرفیت 1M

VII.            واحد Floating Point/Multimedia توسعه یافته

VIII.            حافظه نهان ردیابی اجرا

IX.            هسته سریع اجرایی

    X.            تکنولوژی 4-Wire

در ادامه تاحد امکان به بررسی جزئی مربوط به هر یک از موارد فوق خواهیم پرداخت :

تکنولوژی Hyper-Threading

تکنولوژی Hyper-Threading یک پردازنده فیزیکی را قادر می سازد که دو کد مستقل را کهThread بخشی از یک برنامه می باشد که مستقل عمل میکند. یک پردازنده که ا زتکنولوژی HT استفاده می کند، در واقع شامل دو پردازنده منطقی است که هرکدام از این پردازنده های منطقی، دارای حالت کاری مخصوص به خود می باشد. این حالت کاری Architectural State (AS) نامیده میشود. منظور از AS این است که پردازنده منطقی شامل رجیستر های قطعه، رجیستر های کنترلی، رجیستر های ردیابی و رجیستر های همه منظوره مخصوص به خود می باشد. ضمنا" هر پردازنده منطی در حالت AS دارا یکنترل کنند پیشرفته قابل برنامه ریزی وقفه:

Controller Advanced (APIC) Programmable Interrupt

مخصوص به خود است. اگر یک کامپیوتر دارای پردازنده مبتنی بر تکنولوژی HT باشد، پس از روشن شدن و راه اندازی اولیه کامپیوتر، هر پردازنده منطقی می تواند بصورت مستقل از پردازنده های دیگر، حالت های Halt، وقفه و اجرای مستقیم یک Thread را داشته باشد. در این وضعیت، هر دو پردازنده منطقی در اصل بر روی یک Die قرار گرفته و کامپیوتر در اصل یک پردازنده فیزیکی دارد. ضمن اینکه در یک پردازنده فیزیکی مبتنی بر تکنولوژی HT، پردازنده منطقی، منابع اجرایی هسته پردازنده را بصورت اشتراکی استفاده نمی کند. این منابع شامل موتور اجرایی، حافظه های نهان، واسط گذرگاه سیستم و نرم افزارهای قرار داده شده در حافظه Rom می باشند.

تکنولوژی Hyper Pipelined

شرکت Intel برای رسیدن به فرکانس بالا در پردازنده مذکور، طول خط لوله را افزایش داده است. از یک دیدگاه، طولانی تر شدن خط لوله باعث می شود که فعالیتی که در هر مرحله خط لوله انجام می شود، ساده تر انجام پذیرد. از دیدگاهی دیگر، طولانی شدن خط لوله پردازنده، بر روی بازدهی نهایی پردازنده بصورت مستقیم اثر منفی می گذارد. چرا که اگر به هر دلیل روند عملیات در خط لوله متوقف شود، بازسازی عملیات انجام شده، زمان زیادی را تلف می کند. تلفیق دو دیدگاه شرح داده شده، و افزایش راندمان کاری، با استفاده از تکنیک های پیش واکشی سخت افزار و پیش بینی انشعاب امکان پذیر شده است.

مجموعه دستورات Streaming SIMD Extension 3

شرکت اینتل مجموع دستوراتی را تحت نام SSE3 به مجموعه دسترات پردازنده Pentium 4 اضافه نکرده است. مجموعه دستورات SSE3 عبارتند از:

1. یک دستور تبدیل عدد صحیح به ممیز شناور:

(Store Integer and Pop from x87-FP with Truncation) FISTTP

2. سه دستور بار گذاری و انتقال :

DUPLICATE / LOAD / MOVE

3. یک دستور بارگذاری 128 بیتی : LDDQU

4. دو دستور جمع / تفریق فشرده :

ADDSUBPS/ ADDSUBPD

5. چهار دستور جمع / تفریق افقی :

HADDPS , HSUBPD , HADDPD , HSUBPS

6. دو دستور سنکرون نمودن دو Agent

7. دو دستور Monitor و Nwait جهت سنکرون نمودن دو عامل اجرایی پردازنده به کار می روند. دستور Monitor جهت تنظیم بازه مورد استفاده عملیات مونیتورینگ ذخیره سازی

Write-Back بکار می رود. دستور NWAIT نیز در رابطه با فعال سازی پردازنده منطقی، جهت ورود به حالت بهینه، و در زمان انتظار، جهت عملیات ذخیره سازی Write-Back بکار می رود.

به بیان دیگر، با کمک دو دستور Monitor و Nwait می توان عملیات خط لوله یک پردازنده منطقی را تا زمانیکه خط لوله پردازنده منطقی دوم، در حال نوشتن بر روی حافظه است، متوقف نموده. بنابراین امکان اجرای دو Thread با سرعت بسیار بالا وجود دارد.

گذرگاه سیستم با فرکانس 800MHz

پردازنده Pentium 4 با فرکانس 800MHz ، پهنای باندی معادل با 6.4 GB در ثانیه را جهت گذرگاه سیستم فراهم می نماید. این پهنای باند در اصل با استفاده از چهار مسیر ارسال داده مستقل که فرکانس 200 مگاهرتزی دارند، و با استفاده از عملیات با فرینگ حاصل می شود.

اجرای پویا و پیشرفته دستورات

با استفاده از پیش بینی انشعاب و اجرای خارج از رده و حدس و گمانی دستورات (تا 100 دستور ) این امکان بوجود می اید که پردازنده کارایی ایده آلی داشته باشد.

حافظه نهان L2 با ظرفیت 1M

حافظه نهان L2 با ظرفیت 1 مگابایت، دارایTransfer Cache Advanced (ATC) می باشد. (ATC)وظیفه هدایت توان عملیاتی و تبادل اطلاعات بین هسته پردازنده و حافظه نهان L2 را بر عهده دارد. دارای رابطه 256 بیتی (32بیتی) می باشد که باعث تبادل داده در هر سیکل Clock هسته می شود. هسته Prescott در مقایسه با هسته Northwood که دارای 512KB حافظه نهان L2 است، دارای حافظه نهان L2 به ظرفیت 1MB می باشد. ضمنا" با توجه به فناوری ساخت 90 نانو، افزایش 512KB به 1MB تاثیری در تغییر اندازه سطح Die پردازنده بوجود نیاورده است.

واحد Floating Point/Multimedia توسعه یافته

با استفاده از یک درگاه 128 بیتی ممیز شناور و یک درگاه ثانویه برای انتقال داده ها، اشکال 3 بعدی و گرافیگی نمایش داده شده، بسیار صاف، صیقلی و نرم (Smooth) خواهد بود.

حافظه نهان ردیابی اجرا

حافظه نهان L1 ، به دوقسمت حافظه نهان داده L1 و حافظه نهان ردیابی اجرا L1 تقسیم میشود. حافظه نهان داده L1 دارای ظرفیت برابر با 8 کیلوبایت و حافظه نهان ردیابی اجرا، ریز عمل های کدگشایی (Decode) شده را در خود نگهداری می نماید که باعث حذف کدگشا از حلفه اجرایی و کاهش تاخیر خط لوله می شود.

هسته سریع اجرایی

پردازنده Pentium 4 دارای دو واحد ALU می باشد که با دو برابر فرکانس هسته پردازنده، عملیات خود را انجام می دهند. با وجود این دو واحد سریع، دستورات پایه ای از نوع صحیح، مانند جمع، تفریق،AND منطقی ،OR منطقی، و ... در نصف یک سیکل Clock اجراء می شوند. بعنوان مثال پردازنده Pentium 4 560 دارای فرکانس کاری 3.60GHz می باشد و هسته اجرایی آن با سرعت 7.2GHz عمل می کند.

تکنولوژی 4-Wire

با افزایش توان عملیاتی پردازنده Pentium 4 نیاز به راه حل های مناسب برای کاهش درجه حرارت پردازنده احساس می شود. نسل قبلی Heat sinkهای (سیستم هلی کاهش دما) پردازنده های Intel که بعنوان Intel-Box شناخته می شوند، در برگیرنده یک مدار جهت کنترل سرعت فن می باشند. این مدار حاوی یک سنسور حرارتی است که درجه حرارت محیط را اندازه می گیرد. این مدار کنترلی، سرعت فن خنک کننده را با توجه به درجه حرارت اعلام شده توسط سنسور تنظیم می نماید . شرکت Intel جهت رفع اشکالات نسل قبلی خنک کننده ها، تکنولوژی 4-Wire Fan Speed Control را ارائه نموده است. در این تکنولوژی، کابل مرتبط به Heat sink، دارای رشته سیم چهارمی شده است. این سیم چهارم، انتقال دهنده یک سیگنال از طرف برد اصلی به Heat sink جهت کنترل سرعت چرخش فن پردازنده است. همچنین یک دیود حرارتی در پردازنده، درجه حرارت واقعی پردازنده را اندازه گیری کرده و سپس پردازنده اطلاعات لازم را پیرامون درجه حرارتبه برد اصلی ارسال می نماید. بدین طریق برد اصلی از اطلاعات ارسالی استفاده نموده و در بهینه ترین حالت، سرعت فن پردازنده را کنترل می نماید. 

فهرست مقدمه2 مراحل ساخت پردازنده3 شرکت های تولید کننده پردازنده 9 تاریخچه ریزپردازنده ها 9 درون یک پردازنده 12 ریجستر و Cache15 دستورالعمل های ریزپردازنده 16 نسل های پردازنده ها 20 موارد موثر بر روی کارایی یک پردازنده 21 بررسی انواع پردازنده پنتیوم23 پردازشگر های ۶۴ بیتی 26 مقایسه پردازنده های 32 بیتی با 64 بیتی27 نکاتی در مورد تراشه های 64 بیتی30 ویژگی هایLGA775 و سوکت Prescott31

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد